Verifying the Definition

In these questions we use the Limit Laws to verifying the definition

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} . \tag{1}
\end{equation*}
$$

We will also look at examples where the limit fails to exist so f is not differentiable at a, and where we have to look at both one-sided limits to show that the limit in (1) exists, or not.

1. Using the definition of the derivative as a limit, and not the differentiation rules, calculate the derivatives of the following functions.
i) $x^{4}, \quad x \in \mathbb{R}$
ii) $\sqrt{x}, x>0$
iii) $\frac{1}{1+x^{4}}, \quad x \in \mathbb{R}$.

Solution i) Let $a \in \mathbb{R}$ be given. Observe that for $x \neq a$,

$$
\frac{x^{4}-a^{4}}{x-a}=\frac{(x-a)\left(x^{3}+a x^{2}+a^{2} x+a^{3}\right)}{x-a}=x^{3}+a x^{2}+a^{2} x+a^{3} .
$$

So

$$
\lim _{x \rightarrow a} \frac{x^{4}-a^{4}}{x-a}=\lim _{x \rightarrow a}\left(x^{3}+a x^{2}+a^{2} x+a^{3}\right) .
$$

But polynomials are continuous for all x, so the limit at a is simply the value of the polynomial at a, in this case $4 a^{3}$. Since the limit exists the function x^{4} is differentiable at a, with derivative $4 a^{3}$.

Yet $a \in \mathbb{R}$ was arbitrary so x^{4} is differentiable on \mathbb{R} with

$$
\frac{d}{d x} x^{4}=4 x^{3} .
$$

ii) Let $a>0$ be given. Observe that for $x \neq a$ and $x>0$,

$$
\frac{\sqrt{x}-\sqrt{a}}{x-a}=\frac{\sqrt{x}-\sqrt{a}}{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}=\frac{1}{\sqrt{x}+\sqrt{a}}
$$

So

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} & =\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}} \\
& =\frac{1}{\lim _{x \rightarrow a}(\sqrt{x}+\sqrt{a})}
\end{aligned}
$$

by the Quotient Rule for Limits,

$$
\begin{equation*}
=\frac{1}{2 \sqrt{a}} . \tag{2}
\end{equation*}
$$

Here we have used the result seen in Question 3ii, Sheet 4, that \sqrt{x} is continuous for $x>0$ and so the limit at $a>0$ equals the value at a. For the Quotient Rule we have used the fact that $\lim _{x \rightarrow a}(\sqrt{x}+\sqrt{a})=$ $\sqrt{a} \neq 0$. Since the limit exists the function \sqrt{x} is differentiable at a, with derivative $1 /(2 \sqrt{a})$.

Yet $a \in \mathbb{R}^{+}$was arbitrary so \sqrt{x} is differentiable on \mathbb{R}^{+}with

$$
\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}} .
$$

iii) Let $a \in \mathbb{R}$ be given. Observe that for $x \neq a$,

$$
\begin{aligned}
\frac{\frac{1}{1+x^{4}}-\frac{1}{1+a^{4}}}{x-a} & =\frac{\left(1+a^{4}\right)-\left(1+x^{4}\right)}{\left(1+a^{4}\right)\left(1+x^{4}\right)(x-a)} \\
& =-\frac{x^{4}-a^{4}}{\left(1+a^{4}\right)\left(1+x^{4}\right)(x-a)} \\
& =-\frac{x^{3}+a x^{2}+a^{2} x+a^{3}}{\left(1+a^{4}\right)\left(1+x^{4}\right)},
\end{aligned}
$$

using the ideas seen in Part i. So, by the Quotient Rule for Limits,
$\lim _{x \rightarrow a} \frac{\frac{1}{1+x^{4}}-\frac{1}{1+a^{4}}}{x-a}=-\frac{1}{\left(1+a^{4}\right)} \frac{\lim _{x \rightarrow a}\left(x^{3}+a x^{2}+a^{2} x+a^{3}\right)}{\lim _{x \rightarrow a}\left(1+x^{4}\right)}=-\frac{4 a^{3}}{\left(1+a^{4}\right)^{2}}$.
In the final equality we have used the fact that a polynomial is continuous and so the limit at a equals the value of the polynomial at a. Since the limit exists the function $1 /\left(1+x^{4}\right)$ is differentiable at a, with derivative $-4 a^{3} /\left(1+a^{4}\right)^{2}$.

Yet $a \in \mathbb{R}$ was arbitrary so $1 /\left(1+x^{4}\right)$ is differentiable on \mathbb{R} with

$$
\frac{d}{d x} \frac{1}{1+x^{4}}=-\frac{4 x^{3}}{\left(1+x^{4}\right)^{2}}
$$

2. Recall the results from the Lecture Notes that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0 .
$$

Assume the addition formulae for cosine and tangent.
Prove, by verifying the definition that,
i)

$$
\frac{d}{d x} \cos =-\sin x
$$

$$
\text { for } x \in \mathbb{R} \text {, }
$$

ii)

$$
\begin{aligned}
& \qquad \frac{d}{d x} \tan x=\frac{1}{\cos ^{2} x} \\
& \text { for } x \notin\left\{\frac{\pi}{2}+n \pi: n \in \mathbb{Z}\right\} \text {. }
\end{aligned}
$$

Solution i) Let $a \in \mathbb{R}$ be given. Then

$$
\begin{aligned}
\lim _{y \rightarrow 0} \frac{\cos (y+a)-\cos a}{y}= & \lim _{y \rightarrow 0} \frac{\cos y \cos a-\sin y \sin a-\cos a}{y} \\
= & \cos a \lim _{y \rightarrow 0}\left(\frac{\cos y-1}{y}\right)-\sin a \lim _{y \rightarrow 0} \frac{\sin y}{y} \\
& \quad \text { by the Sum Rule for Limits } \\
= & \cos a \times 0-1 \times \sin a \\
& \text { by the recollection in the question } \\
= & -\sin a
\end{aligned}
$$

Since the limit exists $\cos x$ is differentiable at a with derivative $-\sin a$.

Yet $a \in \mathbb{R}$ was arbitrary so $\cos x$ is differentiable on \mathbb{R} with

$$
\frac{d}{d x} \cos x=-\sin x
$$

ii) Let $a \in \mathbb{R}$, but not of the form $\pi / 2+n \pi$ for any $n \in \mathbb{Z}$, be given. Then

$$
\lim _{y \rightarrow 0} \frac{\tan (a+y)-\tan a}{y}=\lim _{y \rightarrow 0} \frac{1}{y}\left(\frac{\tan a+\tan y}{1-\tan a \tan y}-\tan a\right),
$$

by the sum formula for the tangent. This equals

$$
\lim _{y \rightarrow 0} \frac{\tan y}{y}\left(\frac{1+\tan ^{2} a}{1-\tan a \tan y}\right)=\lim _{y \rightarrow 0} \frac{\sin y}{y}\left(\frac{1}{\cos y-\tan a \sin y}\right) \frac{1}{\cos ^{2} a},
$$

having used

$$
1+\tan ^{2} a=\frac{\cos ^{2} a+\sin ^{2} a}{\cos ^{2} a}=\frac{1}{\cos ^{2} a} .
$$

By the Quotient and Sum Rules for limits this equals

$$
\begin{gathered}
\frac{1}{\cos ^{2} a}\left(\lim _{y \rightarrow 0} \frac{\sin y}{y}\right) \frac{1}{\lim _{y \rightarrow 0} \cos y-\tan a \lim _{y \rightarrow 0} \sin y} \\
=\frac{1}{\cos ^{2} a} \times 1 \times \frac{1}{1-0 \times \tan a}=\frac{1}{\cos ^{2} a} .
\end{gathered}
$$

Since the limit exists $\tan x$ is differentiable at a with derivative $1 / \cos ^{2} a$. Yet $a \in \mathbb{R}$ was arbitrary subject to $a \neq \pi / 2+n \pi$ for any $n \in \mathbb{Z}$, so $\tan x$ is differentiable for all real $x \neq \pi / 2+n \pi$ for any $n \in \mathbb{Z}$ and

$$
\frac{d}{d x} \tan x=\frac{1}{\cos ^{2} x}
$$

Aside You were asked to verify the definition, but if you had not been so restricted you might have applied the Quotient Rule for differentiation. Then

$$
\frac{d}{d x} \tan x=\frac{d}{d x}\left(\frac{\sin x}{\cos x}\right)=\frac{\cos x \frac{d \sin x}{d x}-\sin x \frac{d \cos x}{d x}}{\cos ^{2} x}
$$

provided $\cos ^{2} x \neq 0$, i.e. $x \neq \pi / 2+n \pi$ for any $n \in \mathbb{Z}$. Using the results proved for $\sin x$ and $\cos x$ we have

$$
\frac{d}{d x} \tan x=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}
$$

valid for $x: \cos x \neq 0$ i.e. $x \notin\{(1+2 n) \pi / 2: n \in \mathbb{Z}\}$.
3. Recall the result from the Notes that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

Use this, and the definition of derivative, to find the derivatives of
i) $e^{2 x}$
ii) $x e^{x}$.
iii) $\sinh x$.

Solution i) I give two solutions. First, let $a \in \mathbb{R}$ be given. Observe that for $h \neq 0$,

$$
\begin{aligned}
\frac{f(a+h)-f(a)}{h} & =\frac{e^{2(a+h)}-e^{2 a}}{h} \text { having written } x=a+h \\
& =e^{2 a}\left(\frac{e^{2 h}-1}{h}\right) \text { having used } e^{a+h}=e^{a} e^{h} \\
& =e^{2 a}\left(\frac{e^{h}-1}{h}\right)\left(e^{h}+1\right)
\end{aligned}
$$

since $e^{2 h}-1=\left(e^{h}-1\right)\left(e^{h}+1\right)$. Hence

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} & =\lim _{h \rightarrow 0} e^{2 a}\left(\frac{e^{h}-1}{h}\right)\left(e^{h}+1\right) \\
& =e^{2 a} \lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right) \times \lim _{h \rightarrow 0}\left(e^{h}+1\right)
\end{aligned}
$$

by Product Rule for Limits,

$$
=2 e^{2 a}
$$

Since the limit exists the function $e^{2 x}$ is differentiable at a, with derivative $2 e^{2 a}$.

Yet $a \in \mathbb{R}$ was arbitrary so $e^{2 x}$ is differentiable on \mathbb{R} with

$$
\frac{d e^{2 x}}{d x}=2 e^{2 x}
$$

Second proof, let $a \in \mathbb{R}$ be given. Observe that for $x \neq a$,

$$
\frac{f(x)-f(a)}{x-a}=\frac{e^{2 x}-e^{2 a}}{x-a}=\frac{\left(e^{x}-e^{a}\right)\left(e^{x}+e^{a}\right)}{x-a} .
$$

Take the limit $x \rightarrow a$, using the Product Rule for limits, allowable since both individual limits exist since we know that e^{x} is differentiable on \mathbb{R}. Thus

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} & =\lim _{x \rightarrow a} \frac{\left(e^{x}-e^{a}\right)}{x-a} \lim _{x \rightarrow a}\left(e^{x}+e^{a}\right) \\
& =e^{a} \times 2 e^{a}=2 e^{2 a .}
\end{aligned}
$$

Since the limit exists the function $e^{2 x}$ is differentiable at a, with derivative $2 e^{2 a}$.

Yet $a \in \mathbb{R}$ was arbitrary so $e^{2 x}$ is differentiable on \mathbb{R} with

$$
\frac{d e^{2 x}}{d x}=2 e^{2 x}
$$

ii) I give two solutions. First, let $a \in \mathbb{R}$ be given. Observe that for $h \neq 0$,

$$
\frac{f(a+h)-f(a)}{h}=\frac{(a+h) e^{a+h}-a e^{a}}{h}=a e^{e} \frac{e^{h}-1}{h}+e^{a} e^{h} .
$$

Now use the Sum Rule for Limits to get

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=a e^{a} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}+e^{a} \lim _{h \rightarrow 0} e^{h}=a e^{a}+e^{a} .
$$

Since the limit exists the function $x e^{x}$ is differentiable at a, with derivative $a e^{a}+e^{a}$.

Yet $a \in \mathbb{R}$ was arbitrary so $x e^{x}$ is differentiable on \mathbb{R} with

$$
\frac{d x e^{x}}{d x}=x e^{x}+e^{x}
$$

Second Solution. Let $a \in \mathbb{R}$ be given. Observe that for $x \neq a$,

$$
\frac{f(x)-f(a)}{x-a}=\frac{x e^{x}-a e^{a}}{x-a}=\frac{x e^{x}-a e^{x}+a e^{x}-a e^{a}}{x-a}
$$

having added in zero, $0=-a e^{x}+a e^{x}$. Continuing, this equals

$$
\frac{x e-a}{x-a} e^{x}+a \frac{e^{x}-e^{a}}{x-a}=e^{x}+a \frac{e^{x}-e^{a}}{x-a} .
$$

Thus, by the Sum Rule for Limits,

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} e^{x}+a \lim _{x \rightarrow a} \frac{e^{x}-e^{a}}{x-a}=e^{a}+a e^{a},
$$

the second limit following from the fact that e^{x} is differentiable on \mathbb{R}.
Yet $a \in \mathbb{R}$ was arbitrary so $x e^{x}$ is differentiable on \mathbb{R} with

$$
\frac{d x e^{x}}{d x}=x e^{x}+e^{x}
$$

iii) Recall the definition

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}
$$

for $x \in \mathbb{R}$. Let $a \in \mathbb{R}$ be given. With $h \neq 0$ we have

$$
\begin{aligned}
\frac{\sinh (a+h)-\sinh a}{h} & =\frac{1}{h}\left(\frac{e^{a+h}-e^{-a-h}}{2}-\frac{e^{a}-e^{-a}}{2}\right) \\
& =\frac{1}{2 h}\left(\left(e^{a+h}-e^{a}\right)-\left(e^{-a-h}-e^{-a}\right)\right) \\
& =\frac{e^{a}}{2}\left(\frac{e^{h}-1}{h}\right)-\frac{e^{-a} e^{-h}}{2}\left(\frac{1-e^{h}}{h}\right) \\
& =\frac{1}{2}\left(e^{a}+\frac{e^{-a}}{e^{h}}\right)\left(\frac{e^{h}-1}{h}\right)
\end{aligned}
$$

Now use the Rules for Limits to get

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{\sinh (a+h)-\sinh a}{h} & =\frac{1}{2}\left(e^{a}+\frac{e^{-a}}{\lim _{h \rightarrow 0} e^{h}}\right) \lim _{h \rightarrow 0}\left(\frac{e^{h}-1}{h}\right), \\
& =\frac{1}{2}\left(e^{a}+e^{-a}\right)=\cosh a
\end{aligned}
$$

allowable since both limits exist and $\lim _{h \rightarrow 0} e^{h}=1 \neq 0$. Therefore

$$
\lim _{h \rightarrow 0} \frac{\sinh (a+h)-\sinh a}{h}=\frac{1}{2}\left(e^{a}+e^{-a}\right)=\cosh a .
$$

Since the limit exists the function $\sinh x$ is differentiable at a, with derivative cosh a.

Yet $a \in \mathbb{R}$ was arbitrary so $\sinh x$ is differentiable on \mathbb{R} with

$$
\frac{d \sinh x}{d x}=\cosh x
$$

4. Use the definition of derivative to find

$$
\frac{d}{d x}\left(e^{x} \sin x\right)
$$

for $x \in \mathbb{R}$.
(You may assume if necessary, that $\sin (a+h)=\sin a \cos h+\cos a \sin h$).
Hint Do not use the result but look at the proof of the Product Rule for differentiation and use the idea of "adding in zero".

Solution I give two solutions. First, let $a \in \mathbb{R}$ be given and consider, for $h \neq 0$,

$$
\begin{aligned}
\frac{f(a+h)-f(a)}{h} & =\frac{e^{a+h} \sin (a+h)-e^{a} \sin a}{h} \\
& =e^{a} \frac{e^{h}(\sin a \cos h+\cos a \sin h)-\sin a}{h} \\
& =e^{a} \frac{e^{h} \cos h-1}{h} \sin a+e^{a} \frac{e^{h} \sin h}{h} \cos a .
\end{aligned}
$$

Now use the hint given in the question and "add in zero" in the form $0=-\cos h+\cos h$. Then

$$
\begin{aligned}
\frac{e^{h} \cos h-1}{h} & =\frac{\left(e^{h}-1\right) \cos h+\cos h-1}{h} \\
& =\cos h \frac{e^{h}-1}{h}+\frac{\cos h-1}{h .}
\end{aligned}
$$

Use the Sum and Product Rules for limits to get

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}= & e^{a} \sin a \lim _{h \rightarrow 0} \frac{\left(e^{h}-1\right)}{h} \lim _{h \rightarrow 0} \cos h+e^{a} \sin a \lim _{h \rightarrow 0} \frac{\cos h-1}{h} \\
& \quad+e^{a} \cos a \lim _{h \rightarrow 0} e^{h} \lim _{h \rightarrow 0} \frac{\sin h}{h} . \\
= & e^{a} \sin a \times 1 \times 1+e^{a} \sin a \times 0+e^{a} \cos a \times 1 \times 1 \\
= & e^{a} \sin a+e^{a} \cos a .
\end{aligned}
$$

Since the limit exists the function $e^{x} \sin x$ is differentiable at a, with derivative $e^{a} \sin a+e^{a} \cos a$.

Yet $a \in \mathbb{R}$ was arbitrary so $e^{x} \sin x$ is differentiable on \mathbb{R} with

$$
\frac{d e^{x} \sin x}{d x}=e^{x} \sin x+e^{x} \cos x .
$$

Second Solution. Let $a>0$ be given. Consider

$$
\begin{align*}
\frac{f(x)-f(a)}{x-a} & =\frac{e^{x} \sin x-e^{a} \sin a}{x-a} \\
& =\frac{e^{x} \sin x-e^{a} \sin x+e^{a} \sin x-e^{a} \sin a}{x-a} \tag{3}
\end{align*}
$$

having again added in zero, this time of the form $0=-e^{a} \sin x+e^{a} \sin x$. Continuing, (3) equals

$$
\sin x \frac{e^{x}-e^{a}}{x-a}+e^{a} \frac{\sin x-\sin a}{x-a}
$$

Take the limit as $x \rightarrow a$ and use the Product and Sum Rules for limits. This is allowable sine all the individual limits exist because we know
that e^{x} and $\sin x$ are differentiable on \mathbb{R}. Thus,

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} & =\lim _{x \rightarrow a} \sin x \lim _{x \rightarrow a} \frac{e^{x}-e^{a}}{x-a}+\lim _{x \rightarrow a} e^{a} \lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a} \\
& =\sin a \times e^{a}+e^{a} \times \cos a .
\end{aligned}
$$

Since the limit exists the function $e^{x} \sin x$ is differentiable at a, with derivative $e^{a} \sin a+e^{a} \cos a$.

Yet $a \in \mathbb{R}$ was arbitrary so $e^{x} \sin x$ is differentiable on \mathbb{R} with

$$
\frac{d e^{x} \sin x}{d x}=e^{x} \sin x+e^{x} \cos x
$$

5. i) Prove that $|\sin \theta|$ is not differentiable at $\theta=0$.
ii) Prove, by verifying the definition, that $|\sin \theta| \sin \theta$ is differentiable at $\theta=0$, and find the value of the derivative.

You may assume that $\lim _{\theta \rightarrow 0} \sin \theta=0$ and $\lim _{\theta \rightarrow 0}(\sin \theta) / \theta=1$.
Solution i. If $0<\theta<\pi / 2$ then $\sin \theta>0$ so $|\sin \theta|=\sin \theta$. Thus

$$
\frac{|\sin \theta|-|\sin 0|}{\theta-0}=\frac{\sin \theta}{\theta} \rightarrow 1
$$

as $\theta \rightarrow 0+$ by assumption in question.
If $-\pi / 2<\theta<0$ then $\sin \theta<0$ and $|\sin \theta|=-\sin \theta$. Thus

$$
\frac{|\sin \theta|-|\sin 0|}{\theta-0}=\frac{-\sin \theta}{\theta} \rightarrow-1
$$

as $\theta \rightarrow 0$ - by assumption in question.
Since the one-sided limits are different we conclude that

$$
\lim _{\theta \rightarrow 0} \frac{|\sin \theta|-|\sin 0|}{\theta-0}
$$

does not exist and hence $|\sin \theta|$ is not differentiable at $\theta=0$.

The graph of $|\sin \theta|$ is

ii. For $\theta \neq 0$ consider

$$
\frac{|\sin \theta| \sin \theta-|\sin 0| \sin 0}{\theta-0}=|\theta|\left|\frac{\sin \theta}{\theta}\right|\left(\frac{\sin \theta}{\theta}\right) \rightarrow 0
$$

as $\theta \rightarrow 0$ by the Product Rule for limits and the assumption of the question. Because the limit exists $|\sin \theta| \sin \theta$ is differentiable at $\theta=0$, and the value of the derivative is 0 .

The graph of $|\sin \theta| \sin \theta$ is

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{x^{2}+4 x-12}{x^{2}-4} & \text { if } x \neq 2,-2 \\ 2 & \text { if } x=2 \\ 1 & \text { if } x=-2\end{cases}
$$

i) Prove, by verifying the definition, that $f(x)$ is differentiable at $x=2$, and find the value of the derivative.
ii) Prove that $f(x)$ is not differentiable at $x=-2$.

Solution i) For $x \neq 2$ or -2 consider

$$
\begin{aligned}
\frac{f(x)-f(2)}{x-2} & =\frac{1}{(x-2)}\left(\frac{x^{2}+4 x-12}{x^{2}-4}-2\right) \\
& =\frac{1}{(x-2)} \frac{-x^{2}+4 x-4}{(x-2)(x+2)} \\
& =-\frac{(x-2)^{2}}{(x-2)^{2}(x+2)}=-\frac{1}{x+2} \\
& \rightarrow-\frac{1}{4}
\end{aligned}
$$

as $x \rightarrow 2$. Since the limit exists $f(x)$ is differentiable at $x=2$, with derivative $-1 / 4$.
ii. For $x \neq 2$ and -2 consider

$$
\frac{f(x)-f(-2)}{x-(-2)}=\frac{1}{(x+2)}\left(\frac{x^{2}+4 x-12}{x^{2}-4}-1\right)=\frac{4}{(x+2)^{2}} .
$$

This does not have a finite limit as $x \rightarrow-2$ and so f is not differentiable at $x=-2$.

The graph of f is

7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{ll}
2 x & \text { if } x \geq 1 \\
x^{2}+1 & \text { if } x<1
\end{array} .\right.
$$

By verifying the definition prove that f is differentiable at $x=1$ and find the value of the derivative.

Solution A function f is differentiable at a iff $\lim _{x \rightarrow a}(f(x)-f(a)) /(x-a)$ exists and for this it suffices to show that both one-sided limits exist and are equal.

For this question, if $x<1$, we have $f(x)=x^{2}+1$ in which case

$$
\begin{aligned}
\lim _{x \rightarrow 1-} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1-} \frac{\left(x^{2}+1\right)-2}{x-1}=\lim _{x \rightarrow 1-} \frac{x^{2}-1}{x-1} \\
& =\lim _{x \rightarrow 1-}(x+1)=2 .
\end{aligned}
$$

If $x>1$, then $f(x)=2 x$ in which case

$$
\lim _{x \rightarrow 1+} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1+} \frac{2 x-2}{x-1}=\lim _{x \rightarrow 1+} 2=2 .
$$

The one-sided limits exist and are equal, so f is differentiable at $x=1$. The common value, 2 , is the value of the derivative there, i.e. $f^{\prime}(1)=2$.

The graph of f is

8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x^{2}-x & \text { for } x \leq 1 \\ x^{3}-1 & \text { for } x>1\end{cases}
$$

Prove that f is not differentiable at $x=1$.
(It is quickly seen that the one-sided limits of f at $x=1$ are both 0 , the value of $f(0)$, and so f is continuous at $x=1$. Thus we have another example that continuous does not imply differentiable.)

Solution By definition $f(1)=0$. If $x \leq 1$, then $f(x)=x^{2}-x$ and

$$
\lim _{x \rightarrow 1-} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1-} \frac{x^{2}-x-0}{x-1}=\lim _{x \rightarrow 1-} x=1 .
$$

If $x>1$ then $f(x)=x^{3}-1$ so

$$
\begin{aligned}
\lim _{x \rightarrow 1+} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1+} \frac{x^{3}-1}{x-1}=\lim _{x \rightarrow 1+} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1} \\
& =\lim _{x \rightarrow 1+}\left(x^{2}+x+1\right)=3 .
\end{aligned}
$$

Since the two one-sided limits are different the limit does not exist and so f is not differentiable at $x=1$.

The graph of f is

9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x \geq 0 \\
-x^{2} & \text { if } x<0
\end{array}\right.
$$

i) Use the definition to show that f is differentiable at $x=0$ and find the value of $f^{\prime}(0)$.
ii) Find $f^{\prime}(x)$ for all $x \in \mathbb{R}$.
iii) Is the derivative f^{\prime} differentiable on \mathbb{R} ? Give your reasons.

Solution i) By definition $f(0)=0$. Consider first $x \geq 0$ when $f(x)=$ x^{2} and

$$
\lim _{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0+} \frac{x^{2}}{x}=\lim _{x \rightarrow 0+} x=0
$$

Next, when $x<0$ we have $f(x)=-x^{2}$ so

$$
\lim _{x \rightarrow 0-} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0-} \frac{-x^{2}}{x}=-\lim _{x \rightarrow 0+} x=0
$$

Hence, because both one-sided limits exist and are equal, the limit as $x \rightarrow 0$ exists and

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0 .
$$

ii) For $x \neq 0$, then $f(x)$ equals either x^{2} or $-x^{2}$ when $f^{\prime}(x)=2 x$ or $-2 x$. Hence

$$
f^{\prime}(x)=\left\{\begin{array}{cl}
2 x & \text { if } x>0 \\
0 & \text { if } x=0 \\
-2 x & \text { if } x<0
\end{array}=\left\{\begin{array}{cc}
2 x & \text { if } x \geq 0 \\
-2 x & \text { if } x<0
\end{array}\right.\right.
$$

iii) We next try to differentiate f^{\prime} at $x=0$. Look at the two one-sided limits:

$$
\lim _{x \rightarrow 0+} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0+} \frac{2 x}{x}=2,
$$

while

$$
\lim _{x \rightarrow 0-} \frac{f^{\prime}(x)-f^{\prime}(0)}{x-0}=\lim _{x \rightarrow 0-} \frac{-2 x}{x}=-2 .
$$

Since the two-one sided limits are different, the limit as $x \rightarrow 0$ does not exist, i.e. f^{\prime} does not have a derivative at $x=0$.

Notes a) We could write $f^{\prime}(x)=2|x|$ and we saw in the notes that $|x|$ is not differentiable at $x=0$.
b) Given $n \geq 1$ could you construct a function that has n derivatives at 0 , i.e. $f^{(i)}(0)$ exist for all $1 \leq i \leq n$, yet has no $n+1$ derivative at 0 , i.e. $f^{(n+1)}(0)$ does not exist? End of Notes

